國立東華大學應用數學系
學 生 演 講
一、 主講人:蔡承恩
講 題:利率定義及應用
時 間:99年6月18日(星期五) 15:10-15:30
摘 要:
利率會影響每個人,影響的效果涵蓋了,如銀行帳簿的存款利息、信用卡和房貸,或者資本市場的利息收益等等。瞭解使用利率應用在財務計算上,對於我們所擁有的財產,如何受利率衝擊而影響我們的生活,勢必要有更多的認知。
利息是投資這筆錢(或本金)所賺取的收入。原始本錢的投入稱為本金,本金和利息的加總稱為終值(Future value)。轉換成利息的比率大部分又稱為利率,即在某一單位時間從本金所賺取到利息的比例。
在這次的演說中,使大家認識一些基本的利率算法還有單利、複利以及年金使用時機。
出處:David M. Knox (1993) Mathematics of Finance. 施能仁 翻譯
二、 主講人:姚德凱
講 題:Normal Correlation Models 及 Standardized Multiple Regression Models
時 間:99年6月18日(星期五) 15:30-15:50
摘 要:
Normal Correlation Models 及 Standardized Multiple Regression Models是迴歸分析上的兩種特殊模型。我將先簡單的介紹上述兩種模型的型式及其適用情形,另外將以適當的例子說明如何檢定和估計這兩種模型的參數,並討論他們參數之間的相關性。
參考書籍:
Michael H. Kutner, Christopher J. Nachtsheim, John Neter, William Li (2005). Applied Linear Statistical Models. 5th Edition. McGRAW. Chapter 2.11 & 7.5
三、 主講人:謝昆凌
講 題:Generating a Random Sample by Quantile Functions
時 間:99年6月18日(星期五) 15:50-16:05
摘 要:
In this presentation, we will introduce how to generate a random sample from a given distribution by using a quantile function, which is nothing but the inverse of a cumulative distribution function F when F is continuous and has an inverse. This method is useful for generating both continuous and discrete deviates when the quantile function has a closed form. We will illustrate the method by simulating exponential distribution and discussing the distribution of sample variance of a Poisson sample.
References:
George Casella and Roger L. Berger (2001), Statistical Inference. 2nd Edition. (Publisher?) Chapter 5.6.1-5.6.2.
四、 主講人:簡佩君
講 題:Generating a Random Sample by Accept-Reject Method
時 間:99年6月18日(星期五) 16:05-16:25
摘 要:
The traditional method of generating random variable is inverse CDF method. When cumulative distribution functions cannot be expressed in closed form, we will (one could) use others (other methods). An alternative to the inverse CDF method is the Accept-Reject method. This method is suitable for pdf having closed form (when the associated pdf has a closed form). We would introduce Accept-Reject Method and simulate a sample from Beta distribution as an example.
Reference:
George Casella and Roger L. Berger (2001), Statistical Inference. 2nd Edition. (Publisher?) Chapter 5.6.2-5.6.3.

時間 : | 15:10 ~ 16:25 |
講師 : | 碩士班學生 |
地點 : | 理學院A324會議室 |
性質 : | 演講 |
演講日期 : | 2010-06-18 |