Recent數據載入中... |
【應數系演講-103-05-16】On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using l q Quasi Norms
國立東華大學應用數學系 專 題 演 講 主講人:許瑞麟 成功大學數學系 講 題:On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using l q Quasi Norms 時 間:103 年 05月 16 日 (星期五) 15: 20-16:50 地 點:理工一館 A324 會議室 大 綱 This talk follows the recent discussion on the sparse solution recovery with quasi-norms lq , q ∈ (0, 1) when the sensing matrix possesses a Restricted Isom- etry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at least for those lq ∈ (0, 0.9181], is the sparse solution of the corresponding un- derdetermined linear system. Moreover, if δ2k ≤ 0.4931, the sparse solution can be recovered by any lq , q ∈ (0, 1] minimization. The values 0.9181 and 0.4931 improve those reported previously in the literature.
![]() 瀏覽數
![]() |