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Abstract

For queues and similar systems, Little’s Law, often written L = AW
states that the time average of the number of customers in system is the
product of the arrival rate and the customer average of their waiting times.
We treat sample-path and stationary versions of this result and extensions,
including H = AG, and a distributional Little’s Law. We illustrate how
these results are applied and treat the connection between these results
and a rate conservation law.
Keywords: time average, customer average, sample path, L = AW,
H = )\G, RCL

Queueing theory is about the analysis of mathematical models where entities
called customers arrive at some facility called the system, spend waiting time
in system, and then depart.

In its early history, methods of analysis were tailored to individual models
and varied widely. There were no theorems of any consequence that held across
the board from model to model. This changed in 1961 with “L = AW” [12] by
John Little, often called “Little’s Law” today, and we will sometimes abbreviate
as “LL”. It, together with extensions, is of fundamental importance for both the
foundations of queueing theory and its applications. The literature on this topic
since then is enormous. It is impossible to review all of that here. Instead, our
goal is to explain LL and important extensions, demonstrate their usefulness,
show the connection with some related topics, and provide a literature guide
sufficient for further investigation.

LL states that the time average of the number of customers in system is the
product of the arrival rate and the customer average of the waiting times.

This article is organized as follows. We present an intuitive explanation of
LL and illustrate applications in Section 1. We prove the sample-path version of
Little’s Law in Section 2, treat the stationary version in Section 3, and present
the extension of LL to H = AG in Section 4. We relate these results to a rate
conservation law in Section 5, present a distributional Little’s Law in Section 6,
and briefly review the literature and other related results in Section 7.

*To appear in Wiley Encyclopedia of Operations Research and Management Science, J.J.
Cochran Ed., Vol. 4, pp. 2828-2841, John Wiley & Sons, New York, 2011.
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Figure 1: Waiting Time Data

1 Notation, Explanation, Applications

For ¢ > 1, let customer C; arrive at time t;, have waiting W;, and depart at
t; + W;, where to =0 <t; <ty <.... Forany t > 0, C; is in the system at t if
t; <t < t;+W;. Define the corresponding indicator, I;(t) = 1if t; <t < t;+ W,
and I;(t) = 0 otherwise, where [ I;(t)dt = W;. Let N(t) = Yoo, I;(t), the
number of customers in system at time ¢, and A(¢t) = max{i : t; < t}, the
number of arrivals by time ¢. With A(t), we rewrite N(t) = Zf:(tl) Li(t).

From customer data {¢;} and {W;} for all i, we can construct {N(t)} for
all ¢t. We plot {A(¢)} as a step function and show some customer waiting-time
data in Figure 1, and the constructed {N(¢)} in Figure 2.

In Figure 1, C5 arrives after but departs before Cy. There is no way to
deduce this from Figure 2, which tells us only how many customers are in the
system, not which customers are there. It has less information than Figure 1.
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Figure 2: Number of Customers in System Data

While waiting times are lengths of time, they are also displayed as rectangles
of height one in Figure 2. Thus length W; is also area W;. For each t, N(t) is
simply the number of waiting time rectangles that contain point .



In a (stochastic) queueing model, t;, W;, and N(t) are random variables;
{t;yi > 1}, {W;,i > 1}, and {N(t),t > 0} are stochastic processes. These
random quantities are defined on some sample space. At w, some arbitrary
point in this space, t;(w), W;(w), and N(t,w) are numbers, and the collection
of stochastic processes is called a sample path or realization. A simulation of a
queueing model generates a sample path. We may also observe a real system
as it evolves over time without having a formal model, and view the observed
evolution of arrivals, waiting times, and number in system as a sample path.

Usually, assumptions are made such that stationary versions of these pro-
cesses exist, where in particular for these versions, W; has the same distribution
for all ¢ and N(t) has the same distribution for all ¢. Let W and N be corre-
sponding random variables that have these distributions.

There are two versions of Little’s Law. The sample-path version relates
sample-path averages at some w in the sample space; the stationary version
relates the expected values of W and N. The former is easy to understand and
so intuitively appealing that to some, it may not require a proof (we think it
does). Tt also applies to data collected on real systems. The latter is a common
way to find these quantities, and is an important tool for the analysis of queueing
models. We now present the sample-path version, but omit writing w explicitly;
e.g., we write W; rather than W;(w).

Rectangular area W; is the contribution to the area under {N(¢)} that is
made by customer C;. Now consider the area under {N(¢)} on some interval
(0,T), where as in Figures 1 and 2, T has the property that N(T) = 0. For any
such T, this area may be written either as an integral or a sum,

T AMT)

/OTN(t)dt:/O ;Ii(t)dt=Z/:tZT:Wi, 0

where in our figures, A(T') = 4. For any T where N(T) > 0, (1) does not hold
because a portion of at least one rectangle in the sum contributes to the area
under {N(t)} after T. In this case, sum — integral = error > 0. We define
long-run averages as limits, when they exist, and name them.
T n
L= lim 1/ N(t)dt, w= lim lZm, A= lim A0 (2)
0 =1 ¢

T—oo T n—oo 1 4 t—o0

L is the average number of customers in the system,
w is the average waiting time (of customers in the system), and
A is the arrival rate.

L and w are the two most common performance measures for a queue. We
present an intuitive explanation below and a proof in Section 2 of this funda-
mental relation between them (sample-path version):

Theorem 1 (Little’s Law, LL, or L = Aw). If limits A\ and w exist and are
finite, L exists and is finite, where

L = \w. (3)



The basic reason for (3) is (1). For any T' (where now N(T') > 0) we write

fOT N(t)dt Zf\:q) Wi error _ (A(T))(ZZ\Z(? Wl) _error
T N T T T A(T) T

As T gets large, the first quantity in parenthesis on the right approaches A, the
second approaches w, and the product approaches Aw. Hence Theorem 1 holds
if the term on the far right approaches 0 as T'— oo. The error term itself need
not get small, but only grow more slowly than T'.

Note that (3) holds for some unspecified w. If limits w and A hold as con-
stants on a set of w with probability 1 (w.p.1), (3) holds as a constant w.p.1.

Usually, “L = Aw” is written “L = AW?”. We prefer to use W and N as
defined above, in order to write the stationary version as F(N) = AE(W); see
Section 3. The notation “L” has a long history, meaning the average length of
a waiting line. We now present an application, based on personal experience.

Example 1 (Wine Cellars). There are about 3000 bottles in my friend Loy’s
wine cellar (L = 3000). He doesn’t keep records of when each bottle was bought
and consumed. He wondered “about how old, on average, are these wines when
they are drunk?” He estimates that (with some help) he consumes about 300
bottles per year (A = 300). The answer to his question is w = L/\ = 10 years.
Not quite true. They are on average 10 years older than when he bought them.

When designing my wine cellar, I had to decide its size. I estimated that on
average, wines would be held 5 years when they are drunk (w = 5 years), and I
would drink about 200 bottles per year (A = 200). Thus L = Aw = 1000 bottles,
and the capacity of the wine cellar should be somewhat larger to account for
fluctuations about the average. (Fluctuations are much less in wine cellars than
in a typical queueing model.) It turned out that the wine cellar was too small.
What went wrong? Not LL. I had underestimated A!

Viewing the system as a “black box”, we don’t have to know anything about
what goes on inside the box; LL holds. In this example, it is natural to think of
a collection of wine bottles as inventory, and in fact, queueing theory is closely
related to what is called inventory theory. These theories differ in how we model
what goes on inside the box, what aspects of the model may be subject to some
control, and what decisions are being contemplated.

In most queueing models, the arrival process is treated as given. At a wine
shop, arrivals are scheduled. At a wine cellar, both arrivals and departures are
scheduled. We now describe some queueing models of what is inside the box.

In elementary situations, each arrival at a facility has a service time to be
performed by a server, where the facility has one or more servers. Arrivals
finding all servers busy serving other customers wait in a queue. While in the
system, a customer may spend some time in queue, followed by a service time.

The time that a customer spends in queue before service begins we call
delay in queue or just delay (sometimes called waiting time in queue). Thus a
customer’s waiting time is the sum of the corresponding delay and service time.



Similarly, at any time there will be a queue length (number of customers in
queue) and a number of customers in service, where their sum is the waiting-line
length (number of customers in system).

In Figure 3, we show a “snapshot” of a system where customers are repre-
sented as circles and servers as square boxes. We have five customers in queue,
two servers, two customers in service, and a total of seven customers in system.
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Figure 3: Snapshot of a Queueing System

Let C; have delay D; and service time S;, ¢ > 1, where W; = D; + S;. Simi-
larly, let N, (¢) and N,(t) be the respective (constructed) number of customers
in queue and in service at time ¢, ¢ > 0, where N(t) = N, (t) + Ns(¢).

Let the customer average of {D;} and {S;} be d and E(S) respectively, where
the notation “E(S)” is often used because in many applications, the service
times S; are independent and identically distributed (i.i.d.) random variables,
and their customer average is their expected value. Let the time average of
{Ny(t)} and {N,(t)} be respectively @ and Ly. From LL, we immediately have

Q=X and L, =\E(S). (4)

To obtain (4), we didn’t mention the order of service of customers in queue.
In Figure 3, it would appear to be first-in-first-out (FIFO), also called first-
come-first-served (FCFS); FIFO is easier to pronounce. Some alternatives are
last-in-first-out (LIFO) and shortest job (service time) first (SJF). SJF usually
(but not necessarily) reduces both @ and d. (4) holds in each case. We don’t
have to know what is going on inside the customers-in-queue box.

Is A in the expression for @ in (4) correct? Arrivals finding an idle server
don’t join the queue. To investigate, let 3 be the (long run) fraction of arrivals
who find all servers busy and join the queue, so GA is the arrival rate of these
customers. Let dg be the average delay of these customers. From LL, Q = SAdg.
The average delay of customers who don’t join the queue is 0, and averaging
over both groups, d = 8dg + (1 — 5)0 = Bdg, and indeed, Q = Ad is correct.
For LL, L, A, and w must be averages over the same stream of customers.

The second equation in (4) also deserves a closer look. It is the average
number of customers in service, assuming all are served. This will be true when
the number of servers exceeds AE(S), which is also the average number of busy
servers. When there is one server, it is the fraction of time that server is busy.



Little’s Law may be applied in several ways. If either L or w is known or can
be found by an independent analysis (and we know A), then we know the other.
In other applications, this equation, together with other information, determines
both quantities. In a typical queueing model, A is known (is a parameter). In
a real system, it is not known; sometimes it is estimated from estimates of L
and w. We now illustrate a different application.

Example 2 (Order of Service). At one time at banks and post offices in
the USA, a separate queue formed at each teller (server). These days, a single
queue feeds all tellers. (We exclude from consideration special-purpose tellers.)
How does changing from multiple queues (MQ) to a single queue (SQ) affect
customers? In particular, what is the effect on average waiting time?

To consider this question, assume arrival times ¢; and service times .S; are
fixed. We are changing the order of service. (Should there be a positive queue
behind one teller when another teller becomes free, we assume that a customer
will shift immediately to the idle teller.) With SQ, customers are served FIFO.
With MQ), service times in the order served are a rearrangement of the S;.

Suppose customer service times are i.i.d., independent of all else. Service
times in the order served will be i.i.d., and the distribution of the number of
customers in system will not change. That is, {N(¢),t > 0} under MQ is
essentially the same process as under SQ. (The number in system processes are
said to be stochastically equivalent.) Hence time-average L has not changed. As
A has not changed,

w = L/X\ has not changed.
This does not mean that customers are indifferent to the change. The waiting
time distribution will change. In fact, from the FIFO property of SQ, it is easily
shown that the variance of delay under SQ is smaller than under MQ, and also
under any alternative of this nature, such as an SQ that operates LIFO.

Some queueing models are much more complex. A farmers’ market may be
viewed as a queueing network, where each arriving customer is served at some
sequence of stands (stations), and then departs. LL applies to the arrival and
departure of customers at the market, and also to the arrival and departure of
customers at individual stations. This is an open network. In a closed network,
customers move from station to station, but there are no arrivals to or departures
from the system. For closed networks, LL holds at individual stations.

2 Sample-Path Proof of Little’s Law

Our intuitive explanation for LL in Section 1 is the basis for a formal proof:

Proof. Motivated by Figures 1 and 2, we obtain the inequalities in (5), where
the sum on the left is over those waiting-time rectangles that have ended by T

T A(T)
oW g/ N(t)ydt < > Wi (5)
0 i=1

{ist,+W,<T}



Now divide (5) by T and let T — oo. The right-hand expression has limit Aw,
which implies the left-hand expression has limsup < Aw. LL follows if it has
limit Aw. Toward that end, we need two preliminary results. First, write

n—1
W, 1 n—1 1
— == W; — W;.
For finite w, this expression has limit w — w = 0 as n — oo. That is,
lim W, /n =0. (6)

Finite A implies ¢, — oo and hence A(t,)/t, — X as n — oo. If the arrival
times are distinct, A(¢,) = n; otherwise, A(t,) > n, and we write

Wa _Wan _ WoAlt)
th notn - n tn,
For finite A\ and w and from (6), we have
lim W, /t, = 0. (7)

n—o0

For any ¢ > 0, (7) implies that for some finite m and all ¢ > m, W; < t;e
and t; + W; < t;(14+¢€). Thust; <T/(1+¢€) = t;+ W; <T for every i > m,
which gives this lower bound on the left-hand expression in (5):

A%2) m
dwi=Y W< > W (8)
i=1 i=1 {it;+ W, <T}

Now divide (8) by T and let T" — o0, noting that the second term on the left is a
constant. The left-hand side has limit Aw/(1 + €), which implies the right-hand
side has liminf > Aw/(1 + €). Because € can be arbitrarily small, this implies
the lim inf > Aw. Combining with lim sup, the limit is Aw, and we have (3). O

Some early proofs (but after [12]) assumed the system would empty from
time to time. Little did not require that, nor do we, aside from our convention
that the system is empty initially (which can be dispensed with). To illustrate,
suppose C; arrives at t; = 2i, with service time S; = 3, i > 1, at a 2-server
system. It is easy to see that (draw the figure!) even though the system never
empties, the limits are A =1/2, w =3, and L = Aw = 1.5.

Now let A%(#) be the number of departures by . When (6) holds, we have (7).
By the same method, it is easy to show that

lim AY(t)/t = A\, (9)

t—o0

that is, the departure rate is equal to the arrival rate. (We don’t require w < oo;
see Section 2.1.)



2.1 Technical Considerations; the Case w = oo

In Figures 1 and 2, {W;} determines { N(¢)}, but not the converse. It also turns
out that when finite limits L and A > 0 exist, w may not exist; for examples,
see [20] and p. 289 of [24]. In both cases, the waiting time average oscillates,
and limit (6) does not exist.

Suppose 0 < A < oo and w exist, with w = co. It would be nice to have
L = oo as well, and this is known to be true for a variety of queueing models.

To deal with this question, suppose (6) still holds, which gives (7) and (8).
Now divide (8) by T. For w = oo, the left-hand side — oo as T' — co. We have:
When 0 < A < 0o, w = 00, and (6) holds, L is well defined, where

L = 0.

For a single-server FIFO queue with finite average service time E(S), where
p = AE(S) < 1, it is easy to show that (6) holds, even when w = co. However,
this is not always true. For example, consider an oco-server queue with i.i.d.
service times, so the W, = S; are i.i.d. For i.i.d. W;, w < oo w.p.1 if and only
if (6) holds w.p.1; see p. 239 of [13]. The point is not whether L = oo in this
example, but rather to question when it is valid to use (6) to prove it.

3 Stationary Version of Little’s Law

Queueing models are rarely so simple that either L or w can be found directly as
sample-path averages. Instead, we find the distributions of N or W, or enough
about them to find their means. This is usually done by a stationary analysis.
A substantial portion of the queueing literature is about continuous-time
Markov-chain models, sometimes with complex structure. For a queueing net-
work, we let Ni(t) be the number of customers at station k at time ¢, and N ()
be their sum over k. We replace exponential service with phase-type service,
and so on. For positive-recurrent chains, stationary IV exists, with distribution
determined by the balance equations, and L = E(N) w.p.1, even when infinite.
In these models, A > 0 (in open networks), and w = L/A. Sometimes sophis-
ticated techniques are required to determine positive recurrence and to solve
for stationary distributions, or their means, or approximations of them, but we
have changed the playing field from finding sample-path averages directly.
Sometimes, we find properties of W directly, and from them, properties of N.
For a single-server queue with renewal arrivals (ii.d. inter-arrival times) and
i.i.d. service times (the GI/G/1 queue), FIFO delays D; satisfy the recursion

D1 :max{Di+Si —Ti,O}, i >1, (10)
where inter-arrival time T; = t;41 —t;. Assume 0 < AE(S) < 1. By letting

D; and D;11 in (10) have the same distribution (a stationary analysis), we find
approximations and bounds for the mean and other properties of D, W, and N.



3.1 Little’s Law via Stationary Marked Point Processes

A (one-dimensional) marked point process (mpp) is a sequence {t;,k;}, i > 1,
where 0 < t; <t9 < ... are the points, and the k; are the marks. For queueing
theory applications, the t; are arrival times, so {t;} (the point process) is an
arrival process, and for each 7, k; is something associated with arrival 7; in a
single-server queue, for example, it would be the service time of arrival .

A mpp is called stationary (smpp) if t7 > 0 and {A(¢)} has stationary
increments, which means that for every ¢, the distribution of A(¢t + h) — A(h) is
independent of h. For a smpp, it is easily shown that for all ¢, E{A(t)} = ¢,
where A > 0 is the arrival rate. For renewal arrivals, where T; = ¢;11 —¢;, 4 > 1,
have distribution function ' and mean 1/X, we get the corresponding smpp by
letting t1 have equilibrium density function f(u) = A\[1 — F(u)], u > 0.

{A(t)} is time stationary. For some {A(t)}, we would like to determine
the distribution of event (or customer) stationary {T;}, and the converse. For
renewal arrivals, this is easy, but in general, where the T; are dependent, this
is not the case. One of the major achievements of point-process theory was to
invert (determine one from the other) the distributions of {A(¢)} and {T;} (the
latter is called the Palm distribution), where the one we start with is stationary
and ergodic. Originally, this was for simple arrival processes, where this means
T; > 0. Later, this was extended to allow P(7; = 0) > 0 (batch arrivals).

We also have marks. Starting with stationary {T;, W;}, the corresponding
{A(t), N(t)} was constructed in [6] (and in earlier work referenced there), where
{N(t)} is stationary, and the stationary-version of Little’s Law,

E(N) = AE(W), (11)

was shown, even when infinite, without appealing to the sample-path version.

Describing how the inversion or this construction is done is beyond our scope.
In addition to [6], we cite [4] for point-process theory, [18] for an empirical-
inversion approach, [15] for more on Palm theory, and all four for an historical
account and references.

(11) appears to be very general. For example, we can view waiting times
in some model as though they were generated by an oo-server queue, and set
W; = S;, where the S; are stationary and ergodic. However, this is somewhat
misleading because a queueing model usually would consist of an arrival process,
service requirements, and details about the service facility. Stationary {W;} has
to be constructed. This is easy to do for a single-server queue, but for, say, a
network of multi-server stations, we don’t know how to do this, or even whether
such a {W;} exists, without having some structure, such as regeneration points
(in a general sense), or a Markov process that is Harris recurrent.

‘We now present a deterministic example where customer- and time-stationary
processes are easily constructed independently.

Example 3. Consider a single-server queue with ¢t; = 1, subsequent inter-
arrival times that alternate, 1,4,1,4,... (so A = 1/2.5 = 0.4), and constant
service times S; = 2. We plot {N(¢)} in Figure 4.
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Figure 4: Constructing Stationary Versions

When T; = 1, C; finds the system empty, and W; = 2. Similarly, when
T, = 4, W; = 3. These events alternate. We have jointly-stationary {T;, W;},
where events {T; = 1,W,; = 2} and {T; = 4, W; = 3} each has probability 1/2.
It is easy to see (as fractions of time) that stationary N has distribution

P(N =0)=P(N =2)=0.2, and P(N =1) = 0.6, (12)

with E(N) = 1.0. From the distribution of {T;, W;}, E(W) = 2.5, and (of
coursel) E(N) = AE(W) = (0.4)(2.5).

Constructing {A(¢)} with stationary increments: As the arrival process is
deterministic, its stationary version is completely determined by where the ini-
tial point ¢y = 0 falls. We call inter-arrival intervals either long (length 4) or
short (length 1). If ¢y falls in a long, the time until the first arrival is uniformly
distributed on (0, 4), with subsequent inter-arrival times 1,4, 1,4, .... If it falls
in a short, the time until the first arrival is uniformly distributed on (0, 1), with
subsequent inter-arrival times 4,1,4,1,.... The probability that ¢, falls in a
long is 0.8, the fraction of the real line that is covered by long intervals.

Selecting tp = 0 in this manner, we get waiting-time sequence 2,3,2,3, ...
with probability 0.8 (¢o falls in a long), and 3,2,3,2,... otherwise. {W;} is not
stationary. Except in special cases such as renewal arrivals, it is not possible for
{N(t)} and {W;} to be stationary simultaneously on the same sample space.

4 Extension to H = A\G; Work

For Little’s Law, the C; (and unspecified system behavior) generate {W;} and
{N(t)}, where C; contributes W; to the area under {N(¢)}. We now present
an extension, where the C; may generate other discrete- and continuous-time
processes that are related in the same way. We consider only the sample-path
version, at sample point w, and again omit writing w explicitly.

For each C;, we associate function f;(t), t >0, where [ |f;(t)| dt < co, and
for some finite I; > 0, f;(t) =0 for ¢ ¢ [t;,t; + ;). Now define

Gi:/ooofi(t)dt, i>1, and H(t) :;fi(t), t>0.
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When f;(t) > 0, G; is the area under { H(¢)} contributed by C;. Often, I; = W;.
We define customer and time averages, and A as defined before:

— 1 <
G:n]LH;OE;Gi, and H—Tlgréo—/ H(t
The following is an important extension of LL:

Theorem 2 (H = \G). If limits A and G exist and are finite, and technical
condition (TC): l;/t; — 0 as i — oo, H exists, where

H =\ (13)

In the literature, the usual notation is “H = AG”, but we prefer to reserve
H and G for the stationary version. For LL, I; = W;, and TC is implied by
w < 00. Without TC, some of the area contributed by C; may occur so far in
the future, that, as ¢ increases, some of it is “lost” in the limit, where, possibly,

H < \G,
or H may not exist. However, TC is not necessary. For a necessary and sufficient
condition, see [5], p. 178. The easily-proven version here is widely applicable.
The same issue arises with LL when we have multiple visits; that is, the
same customer visits the system many times, and we define W; as the sum of

C;’s waiting times on all visits. Let C; depart (for the last time) at ¢; + ;. If w
is finite but TC does not hold, it is possible to have

L < \w.

So-called counterezamples to Little’s Law have been constructed in this manner.
We sketch a proof of H = MG, which is almost identical to that for LL.
We assume f;(t) > 0. When this is not the case, split the functions into their
positive and negative parts, f;(t) = max{fi(t),0} and f; (t) = — min{f;(¢), 0},
t > 0. Go through the steps below for the positive parts and the negative parts
separately, and combine the results.
When f;(t) > 0, the bounds on the integral below are immediate:

A(T)

> G</H dt<ZG (14)

{ist;+1;<T}

Now divide (14) by T and let T — oo. The right-hand expression has limit
AG, and the left-hand expression has limsup < AG. To complete the proof,
we obtain a lower bound on the left-hand expression in (14). We already have
In/t, — 0, and following the argument for (7), we get l,/t, — 0, as n — oo.
Following the argument for (8), we have the lower bound

A) m
Y oa-Yas Y a
i=1 i=1 (it +1;<T}

The remaining steps are the same as those for (3), and we have proven (13).
When A > 0 and G = oo, and we still have TC, H = oco.

11



4.1 Work in System

After Little’s Law, the most important applications of (13) involve various rep-
resentations of process {V(t)}, where V(¢), called work in system or just work
at time t > 0, is the sum of the remaining service times of all customers in
system at time t.

With the notation in Section 1, suppose we have a single-server queue with
arrival times ¢; and service times S;. V(t) jumps by S; at ¢;, and where positive,
decreases with slope —1 between jumps, because the remaining service time of
any customer in service decreases at that rate. A typical sample path of V()
is shown as the heavy horizontal (where V (¢) = 0) or slanted lines in Figure 5.

131 t2 i3 2]

Figure 5: Work in System for a Single-Server Queue

When customers are served FIFO, the diagonal dotted lines show when the
first two customers finish service. The vertical dotted line shows when Cy enters
service, and the time between ¢; and that line is D. Similarly, D3 (not shown)
is easy to represent. The contribution of customer C; to the area under {V'(¢)}
is a trapezoid that has a rectangular piece with area D;S;, and a triangular
piece with area S2/2. So for this example, G; = D;S; + 52/2, and from (13)

E(V) =2 [D_s+§/2}. (15)

To be consistent with our notation, “E(V)” should be “V”. From the stationary
version, however, it is also the mean of a stationary V. The form of (15) does not
require FIFO order of service, but only that customers are served to completion,
without interruption. For example, it holds under LIFO and SJF. [While each
customer still generates a trapezoid, the D; would change. If we had LIFO in
Figure 5, D3 would be the time between t3 and the vertical dotted line.] Note
that TC is the same as (6) here, and is satisfied when w < oco.

When we make additional assumptions, (15) can be written in different ways.
For example, when service times are i.i.d. and independent of the arrival process,
the D; and S; are independent and DS = dE(S); (15) becomes

E(V) = pd + \E(5?)/2, (16)
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where p = AE(S). This includes FIFO and LIFO, but not SJF. When we
also have Poisson arrivals (now an M/G/1 queue) and FIFO, d = E(V) (from
PASTA, see e.g. [23]), and from (16), we get

d=XE(S%)/2(1 - p), (17)

the average delay in queue for this model. (As in Example 2, d is the same
under LIFO; only the argument for (17) requires FIFO). When arrivals are not
Poisson, and we can show either d > E(V) or d < E(V), then from (16), we get
a bound on d.

(15) holds for multi-server queues, but the sample paths of {V(¢)} would
change. When service times are i.i.d., Brumelle [2] used these ideas to obtain an
important lower bound on d., the average delay in queue for a c-server system,
in terms of the average delay for a corresponding fast single server; that is, a
server with service times S;/c.

Sometimes a queue operates under rules that give preferential treatment to
some customers or classes of customers over others. This may permit interrupt-
ing service on one customer in order to serve another. Suppose we have work
conservation, which means that the total time in service of every customer is
rule invariant. For a single-server queue, this implies that the sample paths of
{V ()}, as in Figure 5, are the same for all rules, as is E(V'). This fact plays an
important role in the analysis of these rules. For many examples, see [24].

5 A Rate Conservation Law (RCL)

As with Little’s Law and its extensions, the Rate Conservation Law (RCL) by
Miyazawa is of fundamental importance in queueing theory. We cite [14], a
review article; his publications in this area go back to 1983. The theory of level
crossings (e.g., see [1]) is a special case.

As conceived by Miyazawa, RCL is a relation between the expected values of
time-stationary and arrival-stationary quantities, as is the case for Little’s Law
n (11). Sigman [17] showed that the sample-path version of RCL is equivalent
to the corresponding version of H = \G.

However, the starting points for these results (geometrically-appealing areas
in one case, jumps and derivatives in the other) are quite different. In an
application, one is often much easier and more intuitive to use than the other.

In this brief introduction, we present only the sample-path version of RCL.

Consider a sample path {Y (t,w), ¢t > 0} of some stochastic process at sample
point w. As before, we drop w, writing Y (¢) = Y (¢,w), and let Y = {Y'(¢)}. We
assume Y is right-differentiable for all ¢, and define

Y(6) =l V(¢ + h) — Y (O)/
where we assume that Y’ is right-continuous and has left-hand limits. Now Y
may have discontinuities. Let “events” occur at points in an underlying point
process (events could be arrivals), 0 < t; < ty < ---, where 7(¢) is the number of
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points that occur by ¢, such that each discontinuity of Y occurs at one of these
points. (We don’t require Y to be discontinuous at every such point.) Define

—J; =Y (t;+) — Y(t;—), the size of the i*® jump.

Then we have
(1)

/t Y/(u)du=Y(t) - Y(0)+ Y _J, (18)
0 i=1

which simply means that the change in Y between 0 and ¢ is the sum of the
change while continuous plus the sum of the jumps.

Define the limits, when they exist: event rate ), event average J, and time
average Y’. Now divide (18) by ¢ and let t — oo. The following has been shown:

Theorem 3 (Sample-Path RCL). When A and J are finite, and Y (t)/t — 0
as t — o0,

Y =M. (19)

(The stationary-version notation is to write Y/ = E(Y”) and J = E(J).)

It is easier to obtain (15) via (13) (it is immediate), rather than via RCL.
On the other hand, for finding an expression for P(V > v), for stationary work
in system V', RCL is the better tool. See p. 664 of [17].

6 A Distributional Little’s Law

The stationary version of Little’s Law raises this question: Is there a similar
relation between the distributions of N and W, a distributional Little’s Law?

In Example 2, we compared a bank under different rules of operation. Under
both rules, the distribution of N is the same, but the distribution of W is differ-
ent. There is no hope for a distributional law in a general setting. Nevertheless,
we derive a law in the restricted setting of Haji and Newell, [7]. For this result,
further restricted to Poisson arrivals, with applications, see [10].

Let tg = 0 be a random time point, where N(0) = N is stationary, and
{A(t), —o0 <t < o0}, has stationary increments. Number customers backward
in time, where C; occurs at —t;, 0 < t; <ty < ---. So (] is the most recent
arrival. We make the following assumptions:

(a) Customers depart FIFO from the system,

(b){W;} is stationary, and for every i,

(c) W; is independent of the arrival process after C; arrives; in particular, it is
independent of ¢;, which is “how long ago” that customer arrived.

Thus, customer ¢ is in the system at time to = 0 if and only if {W; > ¢;},
and because of (a), these are the same events:

{N>iy={W; >}, i >1,
where (¢) W; and ¢; are independent, and (b) P(N > i) = P(W > t;), where

W is an arbitrary stationary waiting time, independent of every t;. The event
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{W > t;} means that at least ¢ arrivals occur in interval [—-W,0], where W is
independent of {A(¢)}, and the probability of this event does not depend on the
interval location. We have:

Theorem 4 (A Distributional Little’s Law, (DLL)). Under (a) - (c),
N has the same distribution as A(W), (20)

where {A(t)} and W are independent.

We now introduce some new quantities to compare this result with another.
For a queueing system, let N, and Ny be, respectively, the stationary number
of customers in system found by an arrival, and left behind by a departure. It is
easily shown that, in general, N, and Ny have the same distribution. On the
other hand, it is usually the case that N, and N have different distributions
and means. For simplicity, assume inter-arrival times 7; > 0 (no batches). Let
{A.(t)} be the customer-stationary arrival process, which begins with an arrival
at tg = 0, and A.(t) is the number of arrivals in interval (0,¢]. When we have (a),
Ny is the number of arrivals during the departing customer’s waiting time, and
when we also have renewal arrivals (Poisson arrivals is a special case),

Ny has the same distribution as A (W), (21)

where {A.(¢)} and W are independent. While (21) is similar to (20), it is not
as useful. Usually, E{A.(t)} # At and E(Ny) = E{A (W)} # AE(W).

To illustrate, consider a single-server queue, where ¢t; = 10; and S; = 9 for
alli (a D/D/1 queue). Stationary waiting time W; = 9, a constant. As fractions
of time, it is easy to see that N is either 0 or 1, with distribution

P(N=0)=0.1 and P(N =1)=0.09. (22)

We have A = 0.1 and E(N) = AE(W), but N, = Ny = A.(W) = 0. For {A(t)},
t; (backward in time) is uniformly distributed on (0,10). C} is in the system at
to = 0 if and only if {t; <9}, and A(W) = 1. A(W) has distribution (22); DLL
holds. This is a special case of a FIFO GI/G/1 queue, where DLL also holds.

Confusion between {A(t)} and {A.(t)} may be partly responsible for the
following incorrect “intuitive” and “elementary” explanation of the stationary
version of Little’s Law that has appeared several times in the literature:

(i) E(N,) = E(Ng) and (ii) E(Ng) = AE(W).

While (i) is true, there are several problems with this argument. Implicit in
(ii) is FIFO, as in (a) in Theorem 4. That is merely a restriction. More serious
is that (ii) is often false, as in the elementary example above. Also serious is
the implicit equating of N, and N. We are left with

L= B(N) # E(N,) = B(Na) # \E(W). (23)

For the M/G/1 queue, both inequalities in (23) are equalities, the first from
PASTA (N and N, have the same distribution); for the second, a Poisson process
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has stationary and independent increments [{A(¢)} and {A.(¢)} are equivalent].
In this case, the explanation is correct, but it is neither intuitive nor elementary.

Now return to DLL. When does it hold? Condition (a) holds for single-server
queues when customers in queue are served FIFO. It holds for a tandem (series)
arrangement of single-server queues. It holds for multi-server queues under
FIFO and constant service. Looking only at the queue, there is a corresponding
relation between the number of customers in queue and the delay in queue. It
holds for multi-server queues under FIFO, with a general service distribution.
There are other examples for priority classes in what are called priority queues.

Condition (c) appears to require renewal arrivals, which includes the Poisson
process, but not (say) the typical arrival process at the second station of a
tandem queue. There is an exception to this requirement when there are an
infinite number of servers. DLL does not hold in Example 3.

The DLL is very useful when it applies, but unlike the ubiquitous LL, the
conditions for it to hold are rather restrictive.

7 Brief History and Literature Review

Little’s Law was believed to be true long before 1961. On p. 75 of [16], Morse
noted that it holds for every model he was aware of, and challenged someone to
either come up with a general proof or a counterexample. Unfortunately, this
pre-1961 status inhibited the use of LL as a tool in analysis of queueing models.

We have emphasized the sample-path version because it is the easiest to un-
derstand and prove, and it holds in situations when there may be no stationary
version. Viewed this way, it is a conservation law (of area). Furthermore, it
is rare in an application to use the full stationary version in (11). Instead, a
stationary analysis is performed to determine properties of one of the stationary
distributions sufficient to find, approximate, or make other statements about its
mean. The sample-path version then gives us the other.

At first glance, Little’s formulation seems to be sample-path, but it is not,
as it relies on stochastic properties to obtain limits. There also is a flaw in the
formulation, as noted in [3] and elsewhere. In 1967, Jewell [9] proved LL for
(classically) regenerative processes where the system empties from time to time,
and a new cycle begins. Thus over a cycle, (1) is exact! (Shortly thereafter,
several authors either proved LL or gave intuitive explanations for systems that
empty periodically.) What Jewell showed may be viewed as a sample-path result
and may have provided intuition for what followed. However, his conditions are
very restrictive. Stidham has the first sample-path proof, [19], and in 1974 [20],
a proof similar to the one here.

What is now usually called H = AG has a similar history. Brumelle [3]
proved it in 1971 in a stochastic setting similar to Little. He also obtained the
important equation (15). Heyman and Stidham [8] has a sample-path proof in
1980 similar to the one presented here. Brumelle’s result is not the equivalent
stationary version (11) in Section 3. See the references there.

There are too many related results to discuss in the space we have. Here are
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three. For H = AG, a customer’s contribution is an integral, so it accumulates
gradually. This has been extended to allow “lumps” at certain times. Often
a model is simulated to estimate (say) @ or d, and direct (straightforward)
estimators of each, Q or J, are available. From LL, an indirect estimator of
(say) Q is Ad. The statistical efficiency of indirect estimators was investigated
in [11], and by others later. Finally, there are also central-limit-theorem versions
of these results.

For more on these and other results, many other references, and discussion
of the literature, see [5, 21, 22].
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